KNNClassificationVoter¶
- class proglearn.KNNClassificationVoter(k=None, kwargs={}, classes=[])[source]¶
A class used to vote on data under any transformer outputting data in continuous Euclidean space, which inherits from the BaseClassificationVoter class in base.py.
- Parameters
k : int
integer indicating number of neighbors to use for each prediction during fitting and voting
kwargs : dictionary, default={}
contains all keyword arguments for the underlying KNN
classes : list, default=[]
list of all possible output label values
Attributes
missing_label_indices_
(list) a (potentially empty) list of label values that exist in the
classes
parameter but are missing in the latestfit
function callknn_
(sklearn.neighbors.KNeighborsClassifier) the internal sklearn instance of KNN classifier
Methods Summary
Fits data X given class labels y. |
|
Get parameters for this estimator. |
|
Returns the predicted class labels for data X. |
|
Returns the posterior probabilities of each class for data X. |
|
|
Return the mean accuracy on the given test data and labels. |
|
Set the parameters of this estimator. |
- KNNClassificationVoter.fit(X, y)[source]¶
Fits data X given class labels y.
- Parameters
X : array of shape [n_samples, n_features]
the transformed data that will be trained on
y : array of shape [n_samples]
the label for class membership of the given data
- Returns
self : KNNClassificationVoter
The object itself.
- KNNClassificationVoter.get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep : bool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params : dict
Parameter names mapped to their values.
- KNNClassificationVoter.predict(X)[source]¶
Returns the predicted class labels for data X.
- Parameters
X : array of shape [n_samples, n_features]
the transformed input data
- Returns
y_hat : ndarray of shape [n_samples]
predicted class label per example
- Raises
NotFittedError
When the model is not fitted.
- KNNClassificationVoter.predict_proba(X)[source]¶
Returns the posterior probabilities of each class for data X.
- Parameters
X : array of shape [n_samples, n_features]
the transformed input data
- Returns
y_proba_hat : ndarray of shape [n_samples, n_classes]
posteriors per example
- Raises
NotFittedError
When the model is not fitted.
- KNNClassificationVoter.score(X, y, sample_weight=None)¶
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
X : array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
- Returns
score : float
Mean accuracy of
self.predict(X)
wrt. y.
- KNNClassificationVoter.set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it's possible to update each component of a nested object.- Parameters
**params : dict
Estimator parameters.
- Returns
self : estimator instance
Estimator instance.